Reduction Operators and Exact Solutions of Variable Coefficient Nonlinear Wave Equations with Power Nonlinearities

نویسندگان

  • Dingjiang Huang
  • Yan Zhu
  • Qinmin Yang
چکیده

Reduction operators, i.e., the operators of nonclassical (or conditional) symmetry of a class of variable coefficient nonlinear wave equations with power nonlinearities, are investigated within the framework of a singular reduction operator. A classification of regular reduction operators is performed with respect to generalized extended equivalence groups. Exact solutions of some nonlinear wave models, which are invariant under certain reduction operators, are also constructed.

منابع مشابه

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

متن کامل

Exact travelling wave solutions for some complex nonlinear partial differential equations

This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion  ethod for  constructing exact travelling wave solutions of nonlinear partial  differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and  Derivat...

متن کامل

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

Exact Traveling Wave Solutions for a Variable - coefficient Generalized Dispersive Water - wave System using the Generalized ( G ′ G ) - expansion Method

In this paper, a variable coefficient generalized dispersive water-wave system which can model the propagation of the long weakly nonlinear and weakly dispersive surface waves of variable depth in shallow water is presented. With the aid of symbolic computation and using the generalized (G ′ G )-expansion method, the exact traveling wave solutions of this system are obtained. It is shown that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Symmetry

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017